
CS 450

Notes on Hazards and Forwarding from Lecture (with
minimal changes to notation)

Motivation
There are several kinds of data hazards, broken into two
types: those that involve the ALU inputs (ALU hazards and
load hazards) and those involving the D input to the DM
(load-store hazards). We will explain the situation for each
type motivating the problem with several examples.

ALU Hazards
Suppose that these instructions are in the indicated stages:
(Mem) add $1, $2, $3

(Ex) sub $2, $1, $4

(ID) mult $5, $1, $6

As discussed in class, there is a problem is getting the value from $1 in the add to the A
input to the ALU (we will call this “ALU_A” in what follows) in time for the sub
instruction. Similarly, in the next cycle, we have:
(WB) add $1, $2, $3

(Mem) sub $2, $1, $4

(Ex) mult $5, $1, $6

The solution in both cases is the same: we must short-circuit the data path to forward the
value from the Res.A register (where is stored during the Mem phase) or from the WB.A
register (in WB phase) to get it to the ALU_A input. This will happen only when

o The instruction in the Mem/WB phase writes to a register,

o The instruction in the Ex phase reads that same register; and

o That register is NOT $0 (since this is a constant 0 value).

Note that if both of these situations happen at the same time, e.g.,
(WB) add $1, $2, $3

(Mem) sub $1, $2, $4

(Ex) mult $5, $1, $6

we need to read the second value (produced by the sub), not the first. Finally, note that

Note: The notation in this
document refers to the registers
in the diagram on the last page:
Src.A means the A register in the
Source pipeline registers, and
WB.IR.Rw means the Rw field in
the IR register in the Writeback
pipeline registers, and so on.

the situation is essentially unchanged if the instruction reading the register is a sw or lw,
e.g.,
(WB) add $1, $2, $3

(Mem) sw $2, 8($1)

(Ex) lw $5, 12($1)

or if our hazards involves a jal and jr, e.g.,
(WB) jal 100

(Mem) sw $2, 8($1)

(Ex) jr $14

(recall that jal writes to the register $14—here the forwarding path is from WB.NPC to
the 3 input to the PC Mux in the stage EX); the important point is that the first instruction
produces a value, and the later one uses a value before that value would be written to the
RF.

The problem with ALU hazards is that the value being consumed by the ALU is
produced too early to read it from the RF, if we wait until the value is written during the
WB stage; similar problems develop if the DM is producing a value. Thus, a final
example of an ALU hazard is the following:
 (WB) lw $1, 8($2)

(Mem) add $2, $5, $8

(Ex) sub $3, $1, $9

(in which case we forward the value from the WB.Q register to the ALU_A input).

Load-Store Hazards
The DM in fact can be both producer and consumer of the value:
(WB) lw $1, 8($2)

(Mem) sw $1, 8($3) % Note that $1 is in Rb slot (look at the binary format)

We can solve this, again, by forwarding, this time from the WB.Q register back to the
DM_D input, but need only do it when:

o There is a lw instruction in the WB phase;

o There is a sw instruction in the Mem phase reading the register written by the lw;
and

o That register is NOT $0 (since this is a constant 0 value).

Load Hazards
In the preceding cases, values produced were ready (somewhere in the circuit) to be
consumed by an earlier stage, and we just had to provide the proper forwarding under the
right conditions. The main point to see is that the value was produced by the end of one

cycle, and consumed (somewhere) no earlier than the beginning of the next cycle.
However, in one case this is not possible:
(Mem) lw $1, 8 ($2)
(Ex) add $5, $1, $2

Notice that the value is produced no earlier than at the end of the Mem cycle, and needs
to be consumed no later than the beginning of the Ex cycle. This is a distance of two
cycles, and hence the add instruction (even with forwarding) can not get its value in time.
In this case, we must introduce a nop (or other useful instruction) after the lw so that this
reduces to the previous case of an ALU hazard:
(WB) lw $1, 8 ($2)
(Mem) sll $0, $0, 0 // This is a nop; note that the binary encoding of this is all 0s
(Ex) add $5, $1, $2
(ID) sub $6, $1, $4

Such a nop can be in introduced by software (assembler or compiler) or by the hardware
(by stalling the pipeline); it is also possible to try to reorder the instructions to do
something more useful with this instruction slot, but this is a subject for a later lecture…

Forwarding Circuits for ALU Hazards
We may now show the pseudo-style code for the case of the ALU hazards. We will give
details for the case of the ALU_A input only, the B input being very similar. (Note that
the ALU_A input also goes to the 3 input in the PC Mux.) The ALU_A input can come
from the Mem phase (the Res.NPC or the Res.A registers) or from the WB phase; in this
second case, note that we can just take the value from the WB_Out line, the WB Mux
having done the work of choosing the appropriate WB register for us! Another feature of
our language that will save us some work is that any instruction that writes to the register
file will have a Rw field that is non-zero, and any instruction that reads from the register
file will have an Ra (respectively, Rb) field that is non-zero. Thus, we do not have to
check for opcodes except to check for the value coming from the Res.NPC register in
case of the jal instruction. This will make our job much easier.

Thus, we have the following pseudo-code specification of the conditions and sources for
forwarding to the ALU_A line, where the sequence of the cases indicates which
conditions should take precedence:
if (Res.IR.Op == 15 && Src.IR.Ra == 14) // Call this condition JalH
 ALU_A = Res.NPC;
else if (Res.IR.Rw == Src.IR.Ra && Src.IR.Ra != 0) // MemH

ALU_A = Res.A;
else if (WB.IR.Rw == Src.IR.Ra && Src.IR.Ra != 0) //WBH

ALU_A = WB_Out
else

ALU_A = Src.A; // Default

How we do implement these as circuits instead of C-style code? First, we must test for
the various conditions, and then we must use these conditions to select the inputs to a
mux that chooses among the inputs to the ALU_A line. This mux will select among four
possible inputs for the ALU_A wire:

Sel[1] Sel[0] Input Condition for selecting this
input

0 0 Src.A ! JalH && ! MemH && ! WBH

0 1 Res.A ! JalH && MemH

1 0 Res.NPC JalH

1 1 WB_Out ! JalH && ! MemH && WBH

From these we can easily figure out the circuits for Sel[0] and Sel[1].

The case for the B input is very similar (just substitute Rb for Ra), except you must make
sure that you put the mux before the ALU.Src mux and before the line that branches off
to the Mem phase. Both ALU_A and ALU_B are values that the Execute phase thinks
come from the Src.A and Src.B registers, respectively.

Forwarding for Load-Store Hazards
A separate forwarding path is necessary for the load-store hazard. In this case, we must
determine the value for the D input to the DM:
if (WB.IR.Op == 12 and Res.IR.Op == 11 // Opcodes in decimal
 && WB.IR.Rw == Res.IR.Rb && Res.IR.Rb != 0)
 DM_D = WB_Out; // Or can get it from WB.Q directly
else
 DM _D = Res.B; // Default

We do not have a symmetric case (i.e., both A and B), as there is only one input to the
DM! It should be clear from our previous translation of the C-style code into circuits
what to do in this case.

Inserting a Stall
In the case of a load hazard, we must insert a nop. It is important to do this as early as
possible, which means when the lw is in Src.IR and the next instruction is in ID.IR.

A stall is inserted by inserting all zeros (nop, equal to sll $0, $0, 0) into the Src.IR,
disallowing writes to the PC, ID.IR and ID.NPC and letting the rest of the phases proceed
(in particular, the lw proceeds to the Mem phase). We may copy the ID.NPC to the
Src.NPC with no problem, as the nop will not use it. For example, we might have:
lw $1, 8 ($2) (in Src.IR)
add $5, $1, $2 (in ID.IR)

At this point, we should detect a future load hazard using the following condition:
 (Src.IR.Op == 12 && Src.IR.Rw !=0
 && (Src.IR.Rw == ID.IR.Ra
 || (Src.IR.Rw == ID.IR.Rb && ID.IR.Op != 11)

)
)

This condition can be tested by a circuit that takes all the relevant register fields as input
and produces a single wire, IDStall, as output. Note how we have excluded the case of
load-store hazards.

If this condition tests true, we insert a stall, which has the effect of a nop; in the next
cycle we should have:
lw $1, 8 ($2) (in Res.IR)
nop (in Src.IR)
add $5, $1, $2 (in ID.IR)

The easiest thing way to stall the IF and ID stages is to turn off the clocks to these stages
by ANDing them together with the negation of IDStall (i.e., the rising edge for these
clock will only occur when there is no stall required); to insert the nop we can put a mux
before the Src.IR register, which chooses between the ID.IR (when IDStall is 0) and nop
= 0 (when IDStall is 1). The rest of the registers in the Src pipe will be written with
(duplicate) values from the (frozen) ID stage, but these will never be used by the nop
instruction.

One subtle detail of this simple technique is that the IDStall value keep its value constant
through the rising edge which writes the pipeline registers (clock1). The easiest way to do
this is to delay it by storing it in a one-bit register, written sometime during the cycle
(e.g., clock8). Here is the timing template for this:

Clock:

Load hazard detected

IDStall:

Stored value of IDStall:

Clocks to PC, ID.IR, and
ID.NPC ANDed together
with ! IDStall so that
these stages are frozen;
nop inserted into Src.IR

Pipeline advances
normally

81 100 15 1015

MicroMIPS CPU with Basic Pipeline

ALU

IR

RAA

RAB

QA

QB
RW

D
REGISTER
FILE

A Q
 DATA MEMORY

D

32

M
u
x
1

0
Mux

1

RF_Ck

DM_Ck

RF_WE

DM_WE

0

WB_Mux1,
WB_Mux0

 ALU_Mux16 (Sign)Exte
nd

ALUOut

 Result
Registers

Op

A

B

R

 SE

A
Q

Add

Shift
left 2

Add
4

M
u
x

2

0

1

 PCS1, PCS0

IM_Ck

3

PC

INSTRUCTION
MEMORY

Imm

Ra

Rb

IR

32

NPC

32 32
4

Instruction Fetch Instruction Decode/Operand Fetch Execute/Address Calculation Memory Access Write Back

WB.IR.Rw

Src.IR.Op

NPC

NPC NPC

IR IR

2

Note: Clock and control units are not
shown. All pipeline registers are
controlled by a single clock signal, as
described in the text above.

ID SRC

RES
WB

A

B A

D
Imm

Q

A

WB_Out

 ALU_A

 ALU_B

 DM_D

	CS 450
	Notes on Hazards and Forwarding from Lecture (with minimal changes to notation)
	Motivation
	Note that if both of these situations happen at the same time, e.g.,

	 ALU_A = Res.NPC;
	Forwarding for Load-Store Hazards
	Inserting a Stall

