Exercise 6: Get started with the command line

Hanne Munkholm<hm@itu.dk>
IT University of Copenhagen

January 24, 2005

1 The command line

The command line was the primary user interface to computers, before the window-based
point and click graphical desktops existed. You interfaced with the computer by typing
commands on a text terminal, that way telling the computer which programs to run, and
how to behave.

Why do we still use the command line today? Because it is much more efficient for
certain things than a point and click interface is. But it also takes a bit more effort to get
started - you have to learn some commands. However, when you have learned a certain
amount of basic commands, and you are getting the hang of it, you will get a control and
understanding of your computer that you usually don't get in the point and click world.
It's your choice. There will always be more to learn...

2 Starting a terminal window

e There are many different kinds of terminal windows on a Linux system. They might
look slightly different, but one is as good as the other.

If you are using KDE, you can work with KDE's “konsole”. program. Open it from
the KDE-menu “~ System Tools— Terminal”. The terminal window will look
like this:

[hm@stud1 75:£.automounti/robin2/rootfexportfhomed/hm - Shell - Konsole |[=1[a][=]
Session Edit Wiew Seflings Help

Chm@stud175 hm$ [] |~

[T

@)y [ere]

In GNOME, use the GNOME Terminal: “GNOME-menu System Tools— Ter-
minal”. It looks almost the same as “konsole”.

1

If you are using Window Maker, start the "xterm” program by double clicking the

. icon in the Window Maker dock. The terminal window will look like this:

-

O | hm@stud127 :f.automount/robinZ/root/expo |
[hmistud127 hnls |

e The command prompt looks like the following (except "hm” and "stud127” is re-
placed with your user name and machine name):

[hm@stud127 hm]$

In the rest of this exercise, we will refer to the command prompt by a single $ sign,
followed by the command you should execute.

You type a command, then hit "enter” to execute it. When you get the command
prompt back, you can type the next command.

3 The shell

The program that is displaying the command prompt and will interpret the commands you
type, is called a shell. Many different shells exist for UNIX/Linux, and they have some
differences. We will work with "Bash”, the "Bourne again shell” (based on the older
"Bourne Shell”). Bash is the default shell in Linux. For more informatioran bash
(press q to quit).

4 Your first commands

Try the commands below, see what they do, and make sure you understand.

Is List directory contents
The "Is” command will show a list of the files and directories in the current direc-
tory:

$Is

pwd Print working directory

man

The "pwd” command will print the path to the current directory:

$ pwd
/.automount/robin2/root/export/home0/hm

Your current directory will always be your home directory when you start the ter-
minal window.

Display on-line manual pages

The "man” command will show you the on-line manual page for any command,
provided that the manual page exist on the system. If the manual page is more that
one page long (it usually is), you move down one line at a time with "enter”, one
page at a time with "space”, and you exit the manual page with "q”. Try typing

$ man Is

An "option” to a command is a letter or a word you type after the command, to
alter it's behavior. An option is usually preceded by a dash.

In the man page, you can see that there are a lot of "options” to the Is command.
What do you thinkds -1 does? Try it.

Also try$ man pwdand$ man man

more Pager

You have already seen "more” being used: "More” is the program used by "man”
to let you read the manual pages one page at a time. You can use "more” to see the
output of a command, one page at a time. Try

$ more /usr/share/doc/emacs-common-21.3/README

less Pager

Less is used just like "more”, but is a bit more flexible. You can move backward in
the file as well as forward. Try

$ less /usr/share/doc/emacs-common-21.3/README

Remember, you can use "q” to quit.

5 Managing files and directories

mkdir Make directory

Create a directory called "linuxintro”:

$ mkdir linuxintro

cd Change directory
Go to your newly made directory:

$ cd linuxintro

You might want to check that you got there, wytvd.

cp Copy file
Copy the file "/usr/share/pixmaps/firefox.png” to the "linuxintro” directory:

$ cp /usr/share/pixmaps/firefox.png .

The dot means "current directory”. Now copy it to a new file name, so you have
two files:

$ cp firefox.png testfile

mv Move or rename file
Rename firefox.png to testfile2

$ mv firefox.png testfile2

rm Remove file
You can delete a file with the "rm” command:

$ rm testfile2
rmdir Remove directory
You can delete an empty directory with the command "rmdir”. Now create one, so
you can delete it afterward:
$ mkdir linuxsubdir
Typels to see itis really there. Then type

$ rmdir linuxsubdir

to remove it.

6 A few useful commands

cat Concatenate file
Show the content of a file on the screen. Try

$ cat testfile

echo Echo a line of text
"Echo” will repeat the text you type, to the screen:

$ echo "Hello Linux"
sort Sort lines in file alphabetically
$ sort testfile

grep Show lines matching a pattern
With this command, you can pick lines containing a specific word /phrase from of
a file. Grep is a very complex command but we will use it in its simplest form:

$ grep "world" testfile

This command will display all the lines in testfile containing the word "world”.

7 Pipes and redirection

Pipe In Linux/UNIX, there are many small programs that can do one simple thing. List
the files in a directory, show one page of something at the time, etc. The real
usefulness of these programs are revealed, when they are put together, one after the
other. Try the following:

$ Is Jusr/lib | less

The vertical symbol between the two commands is called "pipe”, and it takes the
output of the first command and use it as input for the second command.

On a Danish keyboard, thigkey is found as the third function on thekey, to the
left of the backspace key.

> Redirect stdout
Stdout (standard output) from a program usually goes to the terminal. Example:

$ echo "Hello Linux"

The output "Hello Linux is displayed on the screen. But you can redirect stdout to
a file instead of the terminal:

$ echo "Hello Linux" > testfile3

If the file exist it will be overwritten. If it does not exist, it will be created. Test it
with cat testfile3

>> Append stdout to file
Append something to a file, not overwriting previous entires:

$ echo "12345678" >> testfile3

Check it withcat testfile3

< Redirect stdin
Usually, stdin (standard input) is what you type on your keyboard, or what comes
from the previous program, if in a pipe line. But you can get stdin from a file
instead:

$ cat < testfile3
Now, try setting some programs together in a row:
$ cat /etc/printcap | sort > testfile4
$ cat /proc/pci | grep Ethernet
$ grep -r "inode" /usr/src/linux-2.4 | less

This becomes much more useful when you know more commands.

8 Starting a program from the command line

e You can start a graphical application from the command line by typing its name.
Try

$ firefox

e You didn’t get your command prompt back - you can’t type new commands. That
is because you are running Firefox "in the foreground”. Exit Firefox, either the
ordinary way from the Firefox menu, or by pressing ctrl+c in the terminal window
you started it from.

e Start Firefox from the command line in "background mode”
$ firefox &

This time, you get your command prompt back so you can type new commands,
while Firefox keeps running independently.

References

[1] The on-line manual pages for each command

[2] Peter ToftLinux - Friheden til at lsere Unix
http://www.linuxbog.dk/unix/bog/index.html

[3] Arnold RobbinsUNIX in a Nutshell

